Unique Stable 1:2 Adducts of Silicon Tetrachloride, Silicon Tetrabromide, and the $SiCl_3^+$ ion with Trimethylphosphine

By G. A. Ozin

(Department of Chemistry, The University, Southampton SO9 5NH)

WE recently reported the preparation of the adduct AlCl₃,2Me₃P and predicted that the isoelectronic ion $[SiCl_3, 2Me_3P]^+$ would be stable.¹ This led us to examine the reaction of silicon tetrahalides with trimethylphosphine. We find that the adducts SiCl₄, 2Me₃P and SiBr₄, 2Me₃P, have vapour pressures of less than 2 mm. at 25°. In contrast, at 25° and a pressure of 15 cm., no solid adducts form in a gaseous mixture of silicon tetrafluoride and trimethylphosphine at a mole ratio of 1:2. This is in complete contradiction to the behaviour of these tetrahalides with trimethylamine where silicon tetrafluoride forms both a 1:1 and a 1:2 adduct,² with a vapour pressure in each case of ca. 4 cm. at 20° ; silicon tetrachloride forms a 1:1 adduct only,3 with a vapour pressure of ca. 1 mm. at -66° . We found that silicon tetrabromide forms no adduct at -78° . Preliminary X-ray studies⁴ and vibrational spectroscopy suggest that SiCl₄,2Me₃P is a transoctahedral species. Further, vibrational spectroscopy shows that $SiCl_4.2Me_3P$ and $SiBr_4.2Me_3P$ are only slightly dissociated in benzene at room temperature. The "stability" sequence

$SiF_4 > SiCl_4 > SiBr_4$	towards	Me ₃ N
$SiF_4 < SiCl_4, SiBr_4$	towards	Me ₃ P
$Me_3N > Me_3P$	towards	SiF ₄
$Me_{3}P \gg Me_{3}N$	towards	$SiCl_4, SiBr_4$

appears to be clear cut.

In addition to this unusual behaviour we find that reaction of $[SiCl_3, 2Me_3N]^+ClO_4^-$ (in MeCN) with trimethylphosphine yields, on removal of the volatiles, $[SiCl_3, 2Me_3P]^+ClO_4^-$. Thus the sequence $Me_3P > Me_3N$ is found towards $SiCl_3^+$.

(Received, December 12th, 1968; Com. 1702.)

¹ I. R. Beattie and G. A. Ozin, J. Chem. Soc. (A), 1968, 2373.

² C. J. Wilkins and D. K. Grant, J. Chem. Soc., 1953, 927. See also J. E. Fergusson, D. K. Grant, R. H. Hickford, and C. J. Wilkins, J. Chem. Soc., 1959, 99.

³ A. Burg, J. Amer. Chem. Soc., 1954, 76, 2674.

⁴ M. Webster, personal communication.